Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (2024)

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (1) https://doi.org/10.1038/s41598-017-19135-7 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (2) Повний текст

Видання: Scientific Reports, 2018, №1

Видавець: Springer Science and Business Media LLC

Автори:

  1. Sergiy Tyukhtenko
  2. Girija Rajarshi
  3. Ioannis Karageorgos
  4. Nikolai Zvonok
  5. Elyssia S. Gallagher
  6. Hongwei Huang
  7. Kiran Vemuri
  8. Jeffrey W. Hudgens
  9. Xiaoyu Ma
  10. Mahmoud L. Nasr
  11. Spiro Pavlopoulos
  12. Alexandros Makriyannis

Анотація

AbstractAn understanding of how conformational dynamics modulates function and catalysis of human monoacylglycerol lipase (hMGL), an important pharmaceutical target, can facilitate the development of novel ligands with potential therapeutic value. Here, we report the discovery and characterization of an allosteric, regulatory hMGL site comprised of residues Trp-289 and Leu-232 that reside over 18 Å away from the catalytic triad. These residues were identified as critical mediators of long-range communication and as important contributors to the integrity of the hMGL structure. Nonconservative replacements of Trp-289 or Leu-232 triggered concerted motions of structurally distinct regions with a significant conformational shift toward inactive states and dramatic loss in catalytic efficiency of the enzyme. Using a multimethod approach, we show that the dynamically relevant Trp-289 and Leu-232 residues serve as communication hubs within an allosteric protein network that controls signal propagation to the active site, and thus, regulates active-inactive interconversion of hMGL. Our findings provide new insights into the mechanism of allosteric regulation of lipase activity, in general, and may provide alternative drug design possibilities.

Список літератури

  1. Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chemical reviews 111, 6022–6063, https://doi.org/10.1021/cr200075y (2011).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (3) https://doi.org/10.1021/cr200075y
  2. Blankman, J. L. & Cravatt, B. F. Chemical probes of endocannabinoid metabolism. Pharmacological reviews 65, 849–871, https://doi.org/10.1124/pr.112.006387 (2013).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (4) https://doi.org/10.1124/pr.112.006387
  3. Makriyannis, A. 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. Journal of medicinal chemistry 57, 3891–3911, https://doi.org/10.1021/jm500220s (2014).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (5) https://doi.org/10.1021/jm500220s
  4. Hua, T. et al. Crystal Structure of the Human Cannabinoid Receptor CB1. Cell 167, 750–762.e714, https://doi.org/10.1016/j.cell.2016.10.004 (2016).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (6) https://doi.org/10.1016/j.cell.2016.10.004
  5. Ahn, K., McKinney, M. K. & Cravatt, B. F. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chemical reviews 108, 1687–1707, https://doi.org/10.1021/cr0782067 (2008).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (7) https://doi.org/10.1021/cr0782067
  6. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiological reviews 89, 309–380, https://doi.org/10.1152/physrev.00019.2008 (2009).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (8) https://doi.org/10.1152/physrev.00019.2008
  7. Straiker, A. et al. Monoacylglycerol lipase limits the duration of endocannabinoid-mediated depolarization-induced suppression of excitation in autaptic hippocampal neurons. Molecular pharmacology 76, 1220–1227, https://doi.org/10.1124/mol.109.059030 (2009).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (9) https://doi.org/10.1124/mol.109.059030
  8. Pan, B. et al. Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) Enhances retrograde endocannabinoid signaling. The Journal of pharmacology and experimental therapeutics 331, 591–597, https://doi.org/10.1124/jpet.109.158162 (2009).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (10) https://doi.org/10.1124/jpet.109.158162
  9. Labar, G., Wouters, J. & Lambert, D. M. A review on the monoacylglycerol lipase: at the interface between fat and endocannabinoid signalling. Current medicinal chemistry 17, 2588–2607 (2010).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (11) https://doi.org/10.2174/092986710791859414
  10. Viader, A. et al. Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action. Cell reports 12, 798–808, https://doi.org/10.1016/j.celrep.2015.06.075 (2015).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (12) https://doi.org/10.1016/j.celrep.2015.06.075
  11. Mulvihill, M. M. & Nomura, D. K. Therapeutic potential of monoacylglycerol lipase inhibitors. Life sciences 92, 492–497, https://doi.org/10.1016/j.lfs.2012.10.025 (2013).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (13) https://doi.org/10.1016/j.lfs.2012.10.025
  12. Ignatowska-Jankowska, B. M. et al. In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects. British journal of pharmacology 171, 1392–1407, https://doi.org/10.1111/bph.12298 (2014).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (14) https://doi.org/10.1111/bph.12298
  13. Zhang, J., Teng, Z., Song, Y., Hu, M. & Chen, C. Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 35, 443–453, https://doi.org/10.1038/jcbfm.2014.216 (2015).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (15) https://doi.org/10.1038/jcbfm.2014.216
  14. Wang, Y. et al. Monoacylglycerol lipase inhibitors produce pro- or antidepressant responses via hippocampal CA1 GABAergic synapses. Molecular psychiatry. https://doi.org/10.1038/mp.2016.22 (2016).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (16) https://doi.org/10.1038/mp.2016.22
  15. Parker, L. A. et al. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models. Psychopharmacology 233, 2265–2275, https://doi.org/10.1007/s00213-016-4277-y (2016).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (17) https://doi.org/10.1007/s00213-016-4277-y
  16. Tuo, W. et al. Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors. Journal of medicinal chemistry, https://doi.org/10.1021/acs.jmedchem.6b00538 (2016).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (18) https://doi.org/10.1021/acs.jmedchem.6b00538
  17. Ramesh, D. et al. Blockade of endocannabinoid hydrolytic enzymes attenuates precipitated opioid withdrawal symptoms in mice. The Journal of pharmacology and experimental therapeutics 339, 173–185, https://doi.org/10.1124/jpet.111.181370 (2011).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (19) https://doi.org/10.1124/jpet.111.181370
  18. Schlosburg, J. E. et al. Inhibitors of endocannabinoid-metabolizing enzymes reduce precipitated withdrawal responses in THC-dependent mice. The AAPS journal 11, 342–352, https://doi.org/10.1208/s12248-009-9110-7 (2009).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (20) https://doi.org/10.1208/s12248-009-9110-7
  19. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61, https://doi.org/10.1016/j.cell.2009.11.027 (2010).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (21) https://doi.org/10.1016/j.cell.2009.11.027
  20. Labar, G. et al. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. Chembiochem: a European journal of chemical biology 11, 218–227, https://doi.org/10.1002/cbic.200900621 (2010).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (22) https://doi.org/10.1002/cbic.200900621
  21. Bertrand, T. et al. Structural basis for human monoglyceride lipase inhibition. Journal of molecular biology 396, 663–673, https://doi.org/10.1016/j.jmb.2009.11.060 (2010).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (23) https://doi.org/10.1016/j.jmb.2009.11.060
  22. Schalk-Hihi, C. et al. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 A resolution. Protein science: a publication of the Protein Society 20, 670–683, https://doi.org/10.1002/pro.596 (2011).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (24) https://doi.org/10.1002/pro.596
  23. Rengachari, S. et al. The structure of monoacylglycerol lipase from Bacillus sp. H257 reveals unexpected conservation of the cap architecture between bacterial and human enzymes. Biochimica et biophysica acta 1821, 1012–1021, https://doi.org/10.1016/j.bbalip.2012.04.006 (2012).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (25) https://doi.org/10.1016/j.bbalip.2012.04.006
  24. Rengachari, S. et al. Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase. The Journal of biological chemistry 288, 31093–31104, https://doi.org/10.1074/jbc.M113.491415 (2013).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (26) https://doi.org/10.1074/jbc.M113.491415
  25. Tsurumura, T. & Tsuge, H. Substrate selectivity of bacterial monoacylglycerol lipase based on crystal structure. Journal of structural and functional genomics 15, 83–89, https://doi.org/10.1007/s10969-014-9181-2 (2014).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (27) https://doi.org/10.1007/s10969-014-9181-2
  26. Tyukhtenko, S. et al. Specific Inter-residue Interactions as Determinants of Human Monoacylglycerol Lipase Catalytic Competency: A Role For Global Conformational Changes. The Journal of biological chemistry 291, 2556–2565, https://doi.org/10.1074/jbc.M115.670257 (2016).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (28) https://doi.org/10.1074/jbc.M115.670257
  27. Zvonok, N. et al. Covalent inhibitors of human monoacylglycerol lipase: ligand-assisted characterization of the catalytic site by mass spectrometry and mutational analysis. Chemistry & biology 15, 854–862, https://doi.org/10.1016/j.chembiol.2008.06.008 (2008).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (29) https://doi.org/10.1016/j.chembiol.2008.06.008
  28. Karageorgos, I. et al. Endocannabinoid enzyme engineering: soluble human thio-monoacylglycerol lipase (sol-S-hMGL). ACS chemical neuroscience 3, 393–399, https://doi.org/10.1021/cn3000263 (2012).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (30) https://doi.org/10.1021/cn3000263
  29. Karageorgos, I. et al. Active-site inhibitors modulate the dynamic properties of human monoacylglycerol lipase: a hydrogen exchange mass spectrometry study. Biochemistry 52, 5016–5026, https://doi.org/10.1021/bi400430k (2013).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (31) https://doi.org/10.1021/bi400430k
  30. Nasr, M. L. et al. Membrane phospholipid bilayer as a determinant of monoacylglycerol lipase kinetic profile and conformational repertoire. Protein science: a publication of the Protein Society 22, 774–787, https://doi.org/10.1002/pro.2257 (2013).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (32) https://doi.org/10.1002/pro.2257
  31. Dokholyan, N. V. Controlling Allosteric Networks in Proteins. Chemical reviews 116, 6463–6487, https://doi.org/10.1021/acs.chemrev.5b00544 (2016).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (33) https://doi.org/10.1021/acs.chemrev.5b00544
  32. Woods, K. N. & Pfeffer, J. Using THz Spectroscopy, Evolutionary Network Analysis Methods, and MD Simulation to Map the Evolution of Allosteric Communication Pathways in c-Type Lysozymes. Molecular biology and evolution 33, 40–61, https://doi.org/10.1093/molbev/msv178 (2016).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (34) https://doi.org/10.1093/molbev/msv178
  33. Lee, L. C., Chou, Y. L., Chen, H. H., Lee, Y. L. & Shaw, J. F. Functional role of a non-active site residue Trp(23) on the enzyme activity of Escherichia coli thioesterase I/protease I/lysophospholipase L(1). Biochimica et biophysica acta 1794, 1467–1473, https://doi.org/10.1016/j.bbapap.2009.06.008 (2009).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (35) https://doi.org/10.1016/j.bbapap.2009.06.008
  34. Tyukhtenko, S. I. et al. Sequential structural changes of Escherichia coli thioesterase/protease I in the serial formation of Michaelis and tetrahedral complexes with diethyl p-nitrophenyl phosphate. Biochemistry 42, 8289–8297, https://doi.org/10.1021/bi027246w (2003).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (36) https://doi.org/10.1021/bi027246w
  35. Chiba, H., Hisatake, M., Hirose, M. & Sugimoto, E. Roles of tryptophan residues on the Rhizopus delemar lipase activity: chemical modification in a water-olive oil emulsion. Biochimica et biophysica acta 327, 380–392 (1973).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (37) https://doi.org/10.1016/0005-2744(73)90421-X
  36. Liu, W.-H., Beppu, T. & Arima, K. Studies on the lipase of thermophilic fungus Humicola lanuginosa. VII. The chemical modification of the lipase of Humicola lanuginosa by N-bromosuccinimide in urea solution. Agricultural and Biological Chemistry 41, 131–135 (1977).
  37. Karlsson, M., Contreras, J. A., Hellman, U., Tornqvist, H. & Holm, C. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. Journal of Biological Chemistry 272, 27218–27223 (1997).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (38) https://doi.org/10.1074/jbc.272.43.27218
  38. Vuillon, L. & Lesieur, C. From local to global changes in proteins: a network view. Current opinion in structural biology 31, 1–8 (2015).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (39) https://doi.org/10.1016/j.sbi.2015.02.015
  39. Schubert, C. et al. (US Patent No. 8,080,400, 2011).
  40. Chen, H. et al. Conformational transition pathway in the inhibitor binding process of human monoacylglycerol lipase. The protein journal 33, 503–511 (2014).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (40) https://doi.org/10.1007/s10930-014-9572-z
  41. Rennell, D., Bouvier, S. E., Hardy, L. W. & Poteete, A. R. Systematic mutation of bacteriophage T4 lysozyme. Journal of molecular biology 222, 67–88 (1991).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (41) https://doi.org/10.1016/0022-2836(91)90738-R
  42. del Sol, A., Fujihashi, H., Amoros, D. & Nussinov, R. Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol Syst Biol 2, 2006–0019, https://doi.org/10.1038/msb4100063 (2006).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (42) https://doi.org/10.1038/msb4100063
  43. Taverna, D. M. & Goldstein, R. A. Why are proteins so robust to site mutations? Journal of molecular biology 315, 479–484, https://doi.org/10.1006/jmbi.2001.5226 (2002).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (43) https://doi.org/10.1006/jmbi.2001.5226
  44. Lee, J. & Goodey, N. M. Catalytic contributions from remote regions of enzyme structure. Chemical reviews 111, 7595–7624 (2011).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (44) https://doi.org/10.1021/cr100042n
  45. Brinda, K. & Vishveshwara, S. A network representation of protein structures: implications for protein stability. Biophysical Journal 89, 4159–4170 (2005).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (45) https://doi.org/10.1529/biophysj.105.064485
  46. Invernizzi, G., Tiberti, M., Lambrughi, M., Lindorff-Larsen, K. & Papaleo, E. Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops. PLoS Comput Biol 10, e1003744 (2014).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (46) https://doi.org/10.1371/journal.pcbi.1003744
  47. F C. et al. (U.S. Patent No. 8,435,977 2013).
  48. Pascal, B. D. et al. HDX workbench: software for the analysis of H/D exchange MS data. Journal of the American Society for Mass Spectrometry 23, 1512–1521 (2012).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (47) https://doi.org/10.1007/s13361-012-0419-6
  49. Sirin, S., Pearlman, D. A. & Sherman, W. Physics‐based enzyme design: Predicting binding affinity and catalytic activity. Proteins: Structure, Function, and Bioinformatics 82, 3397–3409 (2014).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (48) https://doi.org/10.1002/prot.24694
  50. Harder, E. et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation 12, 281–296 (2015).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (49) https://doi.org/10.1021/acs.jctc.5b00864
  51. Jorgensen, W. L. OPLS force fields. Encyclopedia of computational chemistry (1998).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (50) https://doi.org/10.1002/0470845015.coa002s
  52. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics 79, 926–935 (1983).
    Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (51) https://doi.org/10.1063/1.445869

Публікації, які цитують цю публікацію

Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural hom*ologs

Neeladri Sen, Ivan Anishchenko, Nicola Bordin, Ian Sillitoe, Sameer Velankar, David Baker, Christine Orengo

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (52) https://doi.org/10.1093/bib/bbac187

2022, Briefings in Bioinformatics, №4

Scopus

WoS

Цитувань Crossref:1

Stability and dynamics interrelations in a Lipase: Mutational and MD simulations based investigations

Tushar Ranjan Moharana, Virendra Kumar, N. Madhusudhana Rao

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (53) https://doi.org/10.1101/634253 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (54) Повний текст

2019

Цитувань Crossref:0

Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance

Muhammad Tahir Khan, Abbas Khan, Ashfaq Ur Rehman, Yanjie Wang, Khalid Akhtar, Shaukat Iqbal Malik, Dong-Qing Wei

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (55) https://doi.org/10.1038/s41598-019-44013-9 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (56) Повний текст

2019, Scientific Reports, №1

Scopus

WoS

Цитувань Crossref:25

Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins

Gulam Rabbani, Ejaz Ahmad, Abrar Ahmad, Rizwan Hasan Khan

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (57) https://doi.org/10.1016/j.ijbiomac.2022.11.146 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (58)

2023, International Journal of Biological Macromolecules, с.822-839

Scopus

WoS

Цитувань Crossref:10

Protein engineering: the potential of remote mutations

Matthew Wilding, Nansook Hong, Matthew Spence, Ashley M. Buckle, Colin J. Jackson

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (59) https://doi.org/10.1042/bst20180614 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (60)

2019, Biochemical Society Transactions, №2, с.701-711

Scopus

WoS

Цитувань Crossref:28

Structural Perspective on Revealing and Altering Molecular Functions of Genetic Variants Linked with Diseases

Yunhui Peng, Emil Alexov, Sankar Basu

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (61) https://doi.org/10.3390/ijms20030548 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (62) Повний текст

2019, International Journal of Molecular Sciences, №3, с.548

Scopus

WoS

Цитувань Crossref:20

Computational Insights into the Allosteric Modulation of a Phthalate-Degrading Hydrolase by Distal Mutations

Ran Xu, Yiqiong Bao, Mengrong Li, Yan Zhang, Lili Xi, Jingjing Guo

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (63) https://doi.org/10.3390/biom13030443 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (64)

2023, Biomolecules, №3, с.443

Scopus

WoS

Цитувань Crossref:0

A Thermolabile Phospholipase B from Talaromyces marneffei GD-0079: Biochemical Characterization and Structure Dynamics Study

Rabia Durrani, Faez Iqbal Khan, Shahid Ali, Yonghua Wang, Bo Yang

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (65) https://doi.org/10.3390/biom10020231 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (66)

2020, Biomolecules, №2, с.231

Scopus

WoS

Цитувань Crossref:16

Conformational gating, dynamics and allostery in human monoacylglycerol lipase

Sergiy Tyukhtenko, Xiaoyu Ma, Girija Rajarshi, Ioannis Karageorgos, Kyle W. Anderson, Jeffrey W. Hudgens, Jason J. Guo, Mahmoud L. Nasr, Nikolai Zvonok, Kiran Vemuri, Gerhard Wagner, Alexandros Makriyannis

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (67) https://doi.org/10.1038/s41598-020-75497-5 · Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (68)

2020, Scientific Reports, №1

Scopus

WoS

Цитувань Crossref:7

Effects of Distal Mutations on Prolyl-Adenylate Formation of Escherichia coli Prolyl-tRNA Synthetase

Jonathan Zajac, Heidi Anderson, Lauren Adams, Dechen Wangmo, Shanzay Suhail, Aimee Almen, Lauren Berns, Breanna Coerber, Logan Dawson, Andrea Hunger, Julia Jehn, Joseph Johnson, Naomi Plack, Steven Strasser, Murphi Williams, Sudeep Bhattacharyya, Sanchita Hati

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (69) https://doi.org/10.1007/s10930-020-09910-3

2020, The Protein Journal, №5, с.542-553

Scopus

WoS

Цитувань Crossref:3

Знайти всі цитування публікації

Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase (2024)

References

Top Articles
Lehmann's Power Equipment
Was ist HHC-P und die Unterschiede zu HHC und THC
Spasa Parish
Rentals for rent in Maastricht
159R Bus Schedule Pdf
Sallisaw Bin Store
Black Adam Showtimes Near Maya Cinemas Delano
Espn Transfer Portal Basketball
Pollen Levels Richmond
11 Best Sites Like The Chive For Funny Pictures and Memes
Things to do in Wichita Falls on weekends 12-15 September
Craigslist Pets Huntsville Alabama
Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
Red Dead Redemption 2 Legendary Fish Locations Guide (“A Fisher of Fish”)
What's the Difference Between Halal and Haram Meat & Food?
R/Skinwalker
Rugged Gentleman Barber Shop Martinsburg Wv
Jennifer Lenzini Leaving Ktiv
Justified - Streams, Episodenguide und News zur Serie
Epay. Medstarhealth.org
Olde Kegg Bar & Grill Portage Menu
Cubilabras
Half Inning In Which The Home Team Bats Crossword
Amazing Lash Bay Colony
Juego Friv Poki
Dirt Devil Ud70181 Parts Diagram
Truist Bank Open Saturday
Water Leaks in Your Car When It Rains? Common Causes & Fixes
What’s Closing at Disney World? A Complete Guide
New from Simply So Good - Cherry Apricot Slab Pie
Fungal Symbiote Terraria
modelo julia - PLAYBOARD
Poker News Views Gossip
Abby's Caribbean Cafe
Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
Tri-State Dog Racing Results
Navy Qrs Supervisor Answers
Trade Chart Dave Richard
Lincoln Financial Field Section 110
Free Stuff Craigslist Roanoke Va
Wi Dept Of Regulation & Licensing
Pick N Pull Near Me [Locator Map + Guide + FAQ]
Crystal Westbrooks Nipple
Ice Hockey Dboard
Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sämtliche Pedelecs stark im Preis - nur noch für kurze Zeit
Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
Infinity Pool Showtimes Near Maya Cinemas Bakersfield
Dermpathdiagnostics Com Pay Invoice
How To Use Price Chopper Points At Quiktrip
Maria Butina Bikini
Busted Newspaper Zapata Tx
Latest Posts
Article information

Author: Corie Satterfield

Last Updated:

Views: 5519

Rating: 4.1 / 5 (42 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Corie Satterfield

Birthday: 1992-08-19

Address: 850 Benjamin Bridge, Dickinsonchester, CO 68572-0542

Phone: +26813599986666

Job: Sales Manager

Hobby: Table tennis, Soapmaking, Flower arranging, amateur radio, Rock climbing, scrapbook, Horseback riding

Introduction: My name is Corie Satterfield, I am a fancy, perfect, spotless, quaint, fantastic, funny, lucky person who loves writing and wants to share my knowledge and understanding with you.